Scalar TripIe Product

IMPORTANT

Scalar TripIe Product: Overview

This topic covers concepts, such as, Scalar Triple Product,Magnitude of Scalar Triple Product of Three Vectors,Properties of Scalar Triple Product etc.

Important Questions on Scalar TripIe Product

HARD
IMPORTANT

The scalar product of the sum of vectors   i ^ + j ^ + k ^  with the unit vector along the sum of vectors   2 i ^ +4 j ^ 5 k ^ andλ i ^ +2 j ^ +3 k ^  is equal to one. The value of   λ  would be:

MEDIUM
IMPORTANT

a×b×a×c=

EASY
IMPORTANT

Let the vectors u1=i^+j^+ak^, u2=i^+bj^+k^, and u3=ci^+j^+k^  be coplanar. If the vectors v1=a+bi^+cj^+ck^, v2=ai^+b+cj^+ak^ and  v3=bi^+bj^+c+ak^ are also coplanar, then 6a+b+c is equal to 

HARD
IMPORTANT

Let a=i^+2j^+3k^ and b=i^+j^-k^. If c is a vector such that a·c=11,b·a×c=27 and b·c= -3|b|, then |a×c|2 is equal to

MEDIUM
IMPORTANT

If four distinct points with position vectors a,b,c and d are coplanar, then [abc] is equal to

MEDIUM
IMPORTANT

Let a, b, c be three distinct real numbers, none equal to one. If the vectors ai^+j^+k^, i^+bj^+k^ and i^+j^+ck^ are coplanar, then 11-a+11-b+11-c is equal to

EASY
IMPORTANT

The sum of all values of α, for which the points whose position vectors are i^-2j^+3k^, 2i^-3j^+4k^, α+1i^+2k^ and 9i^+α-8j^+6k^ are coplanar, is equal to

EASY
IMPORTANT

Let the vectors a, b, c represent three coterminous edges of a parallelopiped of volume V. Then the volume of the parallelopiped, whose coterminous edges are represented by a, b+c and a+2b+3c is equal to

EASY
IMPORTANT

Let the vectors u1=i^+j^+ak^, u2=i^+bj^+k^, and u3=ci^+j^+k^  be coplanar. If the vectors v1=a+bi^+cj^+ck^, v2=ai^+b+cj^+ak^ and  v3=bi^+bj^+c+ak^ are also coplanar, then 6a+b+c is equal to 

EASY
IMPORTANT

If ai^+j^+k^, i^+bj^+k^,  i^+j^+ck^ are coplanar then the value 11-a+11-b+11-c is

MEDIUM
IMPORTANT

If a,b,c,d are coplanar vectors then the value of abc is

EASY
IMPORTANT

If V is volume of parallelepiped whose edges determined by vectors a, b, c, then volume of parallelepiped whose edges determined by vectors a, a+b, a+2b+3c is

EASY
IMPORTANT

Sum of all values of α for which i^-2j^+3k^, 2i^-3j^+4k^, α+1i^+2k^ and 9i^+α-8j^+6k^ are coplanar.

MEDIUM
IMPORTANT

Let u=i^-j^-2k^v=2i^+j^-k^v·w=2 and v×w=u+λv, then u·w is equal to

HARD
IMPORTANT

Let p, q, r, s  be the vectors such that s=xp×q+yq×r+zr×p. If pqr=8 and s·p+q+r=16, then x+y+z is equal to

MEDIUM
IMPORTANT

Let a=i^+j^+k^, b=i^-2j^+k^,c=i^+3j^-2k^,d=2i^+j^-k^ be four vectors and let l=b·c and m=b·a. Then mb+Iabd

HARD
IMPORTANT

Let a be a vector in the plane containing vectors b=i^+2j^+k^ and c=2i^-j^+k^. If a is perpendicular to i^+j^+3k^ and its projection on b is 36, then a2=

EASY
IMPORTANT

What is the value of A+B·A×B?

MEDIUM
IMPORTANT

let a vector c be coplanar with the vectors a=-i^+j^+k^ and b=2i^+j^-k^. If the vector c also satisfies the conditions c·a+b×a×b=-42 and c×a-b·k^=3, then the value of c2 is equal to

EASY
IMPORTANT

Consider a vectorr=a+a×b . where the projection of ron a is 2. Then the maximum value of r2=